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Pipeline integrity and extending marginal system life 
using machine learning algorithms. 

 

1. Abstract 

The condition of critical oil and gas infrastructure deteriorates with 
age. This can be due to a number of reasons, for example time-
dependent degradation mechanisms such as corrosion or fatigue.  
Pipelines are expensive assets and the change in risk of failure due 
to degradation can affect the whole economics of operating the 
asset. 

The authors of this paper have applied structural reliability 
techniques to large numbers of defects on aging assets, this 
methodology can take time and can become computationally 
expensive using traditional Monte Carlo simulation.  

For this reason, the authors have trained machine learning 
algorithms to categorise defects by their probability of failure. The 
population of defects having a high predicted failure probability were 
selected for probabilistic assessment first, followed by the lower 
probability populations. Categorisation of defects in this way enabled 
the authors to improve the efficiency of the assessment process.  

By using a blend of custom designed assessment and machine 
learning software the authors have developed a cost and time 
efficient method of assessing the risks associated with the life 
extension of existing assets. 
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2. Introduction 

The larger fields on the United Kingdom Continental Shelf (UKCS) are 
in general approaching an age where the infrastructure and, the export 
pipelines are required to continue to operate well beyond the original 
design life. 
 
Smaller pools of hydrocarbons are being discovered, these smaller 
pools can only be economically exploited if existing processing and 
export infrastructure remains economically feasible to maintain and to 
operate to acceptable standards of safety. 
 
Recent exploitation, or proposals for exploitation of smaller fields such 
as Orlando, Vorlich and Harrier rely on nearby processing and 
exportation infrastructure. In all probability these fields would not be 
economic to develop individually. The Oil and Gas Authority (OGA) 
have previously stated that there are in the region of 200 smaller pools 
of hydrocarbons which lie close to existing infrastructure.  [1] 

The UKCS is undergoing a transition from Exploration Led Assets (ELA) 
to Asset Led Exploration and Exploitation (ALEE). Fields developments 
such as the Greater Stella Area show that beneficial exploitation of 
smaller pools can be achieved by utilising pre-existing exportation 
infrastructure. 

Recent legislation requires operators on the UKCS to maintain and 
operate their infrastructure in a way that maximises economic recovery. 
It is important to note that the legislation is not owner/operator specific 
or related to the original design life, the infrastructure must be 
maintained and operated in a way which maximises economic recovery 
of the geographical region and may include consideration of use by 
others in the future. 

The Maximising Economic Recovery (MER) legislation states that: 

“Relevant persons must, in the exercise of their relevant functions, take 
the steps necessary to secure that the maximum value of economically 
recoverable petroleum is recovered from the strata beneath relevant UK 
waters.” [2] 

The ability to prove that a pipeline is safe for continued use in the future 
has strategic implications for development of smaller pools and helps 
provide justification that assets are managed in a such a way that 
maximises economic recovery. 
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3. Determining a pipelines’ continued suitability for use. 

Assessments currently performed to determine if a pipeline is suitable 
for continued use can be split into three categories, the categories are 
deterministic, probabilistic and semi-probabilistic. 

3.1.  Deterministic Assessment 

The deterministic assessment uses extreme variable parameters such as 
the specified minimum or maximum for each parameter, this approach 
provides conservative results given conservative assumptions. Each 
defect is assessed using one calculation iteration which requires low 
resource and computing requirement, which in turn results in a low cost, 
at the expense of a conservative assessment. 

More advanced methodologies such as probabilistic and semi-
probabilistic techniques can be used to reduce conservatism, and to 
provide a direct probability of failure. In both cases a high degree of 
competence is required by the engineers performing the task and the 
techniques diverge considerably in the required computing resources. 

3.2.  Probabilistic Assessment 

One method of Structural Reliability Analysis (SRA) is Monte Carlo 
Simulation (MCS). Distributions of parameters are derived from 
measured data, for example input variable distributions for yield and 
tensile strengths can be constructed from mill test certificate data.  
 
The MCS will perform many iterations using a different value for each 
iteration in accordance with the distribution curves generated. Each 
individual iteration can be considered as an individual deterministic 
assessment; however, each defect assessment will entail performing 
many individual iterations. Considering the low probability of failure being 
assessed, this is typically in the region of 1x109 iterations which requires 
considerable computational resources. 

3.3.  Semi-Probabilistic Assessment 

First Order Reliability Methods (FORM) were proposed in the early 
1970’s as reliability indicators for deterministic systems. The original 
methodology was proposed by Hasofer and Lind in 1974 [3]. Further 
developments of semi-probabilistic methods such as Second Order 
Reliability Method (SORM) as well as FORM have limitations, typically 
the applicability must be proven by MCS, so the use can be limited. 
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4. Proposed Assessment Methodology 

Traditional probabilistic assessment performed as part of an Aging Life 
Extension (ALE) study or SRA assessment, is limited by computing 
power and restrictions on time to delivery of the assessment. Only the 
worst-case defects are assessed to reduce the resources required, 
however the worst-case defects are defined using engineering 
judgement which is open to error.  

The authors propose to use advances in modern computer architecture 
to accelerate the Monte Carlo simulation using parallel processing 
techniques. 

The authors originally proposed the use of machine learning to 
categorise all defects as having a high, medium and low probability of 
failure, thereby identifying high risk defects for further assessment. As 
explained in Section 6, a data entry process has been identified which 
allows direct assessment and prioritisation using an estimated probability 
of failure. 

The resulting process results in a systematic way to identify and assess 
the defects at higher risk of failure in a cost, time and resource efficient 
manner. This provides end-users a high confidence in results. 

4.1.  Core Assessment Criteria 

The core assessment criteria uses internationally recognised criterion 
such as the ASME Modified B31.G [4], Kastner [5] and Battelle NG18 
criteria [6]. 

4.2.  Machine Learning and Artificial Intelligence 

Machine Learning (ML) and Artificial Intelligence (AI) are related but differ 
in the way the output is manipulated. ML uses statistical categorisation 
methods and supplied training data as part of a supervised learning 
process to output the answer which most closely correlates with the 
statistical relationships of previously processed learning data. AI 
attempts to use the output of ML to return an output or perform a task 
which could also be characterised by human intelligence. 
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4.3.  Parallel Processing 

MCS consists of many, typically simple calculations, the high computing 
resource cost is a direct function of the large number of iterations required 
(typically 1x109).  

The Central Processing Unit (CPU) of a computer works in a simple linear 
manner, each iteration is calculated before the CPU moves forwards to 
calculate the following iteration. The authors have developed custom 
software which uses the Graphical Processing Unit (GPU) to perform the 
calculation of many iterations simultaneously. The number of 
simultaneous calculations is limited by the number of processing cores 
within the GPU and is typically in the region of 768 to 2048 in modern 
GPU units, albeit at a slightly slower processing speed than the CPU. 
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5. Parallel processing to accelerate Monte Carlo simulations 

The Pipeline Research Council International (PRCI) methodology was 
chosen as a base methodology for research [7]. The authors recognise 
that at its core a single assessment is performed, later work by the 
authors includes addition of other assessment techniques commonly 
used throughout the pipeline industry. 

The MCS process performs many discreet deterministic assessments 
using input variables chosen with a frequency determined by the 
probability distribution of the variable. In practice this means that many 
simulations will be performed using a value nearest to the variable mean 
value, and fewer simulations using the extreme values.  

For most iterations the deterministic assessment will not result in a 
prediction of failure, only in the cases where several independent 
improbable variable values occur simultaneously will failure be predicted. 
If insufficient iterations are performed the combinations of values which 
result in an assessment failure may never be assessed. When insufficient 
iterations are performed the likelihood of underestimating the probability 
of failure is greater than the probability of overestimating it. 

Shooman’s equation [8] (Equation 1) shows that for a typical MCS, the 
number of iterations must be a further 2-3 orders of magnitude greater 
than the magnitude of the event being assessed. For example, a 10-6 
event would require somewhere in the region of 108 and 109 iterations to 
return a stable result when assessed at a 95% confidence level. 

 

%� = 200���	
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       (Equation 1) 
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Iterations Time per defect 

1.00E+4 1 Sec 

1.00E+5 10Sec 

1.00E+6 1.7 Min 

1.00E+7 16.7 Min 

1.00E+8 2.8 Hours 

1.00E+9 1.2 Days 

1.00E+10 1.7 Weeks 

1.00E+11 16.5 Weeks 

1.00E+12 3.2 Years 

 

Table 1 - Time taken to assess a single defect by MCS 

 
Early trials using ML indicated that a stable result using ML would require 
somewhere in the region of 1000 data-points in the failure region, this 
results in a total requirement to perform approximately 1E+12 iterations 
and the consequent time requirement as shown in Table 1 for this number 
of iterations. The authors determined that parallel processing was a 
viable method to accelerate the number of iterations completed in each 
time period. 

To overcome the computational limitations of processing the iterations 
linearly using the CPU, the authors re-coded the methodology using the 
C++programming language and integrating with the CUDA derivation of 
the C++ language for the CUDA parallel computing platform and 
application programming interface. This enables multi-core processing 
using a standard NVidia GPU graphics card commonly used for gaming 
[9,10]. The resulting processing speed was found to be around 100 times 
quicker than by using linear CPU computing. The process is improved by 
a further order of magnitude by using a partial-probabilistic model as 
detailed in Section 7.1. 
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6. Machine Learning to Identify Defects at the Highest Risk of 
Failure 

The authors considered methods to identify the defects with the highest 
probability of failure, and which would require further detailed 
assessment. Defects in the pipeline at a much lower risk of failure are 
unlikely to fail first and do not undergo detailed assessment. 

Early research conducted by the authors focused on using a ML process 
trained on a dataset of pre-calculated defect failure probabilities, the ML 
process succeeded in determining which defects had the highest 
probability of failure, and therefore excluded many defects from requiring 
individual assessment. 

The results of ML however, are influenced by the training dataset. The 
authors are aware that by having a training dataset populated by data 
from defects with a high probability of failure, the ML results are biased 
in accuracy towards high probability defects. For this reason, caution 
must be used when adding additional defects to the training dataset, 
when the defect has previously been assessed as being at high risk of 
failure. 

Initial work with ML used Orange software, [11] later work has been 
transferred to the C++ language however Orange has a clear graphical 
interface which is used to illustrate the ML process explained in this 
paper. An example of a ML training process flow is shown below in Figure 
1. 



 OPT 2019 

Aidan Charlton, Toby Fletcher Page 9 

 
Figure 1 - Typical ML training process flow 

Early work in classifying the defects at high, medium and low risk of 
failure showed that three input variables can describe each individual 
defect in a specific pipeline, the defects are described using initial length, 
initial depth and year.  

 
Each defect has previously been assessed using the parallel processing 
procedure described in Section 5 to compute a predicted probability of 
failure. The calculated probability is divided into high, medium and low 
risk of failure to generate target data to train the ML algorithm. The 
categorisation is illustrated in Figure 2, defects of extreme length exhibit 
a reduced rate of change in the Folias bulging factor and hence tend 
towards a common probability of failure that is dominated by depth at 
further increases in length, this forms an upper-bound to the required 
lengths of defect to be assessed. 
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Figure 2 - Correlation of probability of failure with respect to length and number of years 

The authors identified that the accuracy of classification of defects using 
ML was degraded by including the year as input data, the input data the 
model is trained on is not assigned ranking weights, therefore the year 
assessed is as important as the initial defect’s size. Where it is 
recognised that many iterations using MCS will result in a mean value 
being obtained for the corrosion growth rate it is possible to provide an 
alternate data input of current length and current width. 
 
The problem described is an example of data quality versus data quantity 
when using ML processes. By assigning a current dimension under the 
partial-probabilistic model it is possible to provide ten times as many 
individual defect dimensions using the same size of input dataset 
provided by MCS. The result is equivalent to an order of magnitude 
reduction in computing resources required to perform MCS. The change 
to the input data improves the accuracy of the ML predictions at no further 
cost. 
 
An example of output results from the improved ML procedure is shown 
below in Figure 3, many results are classified correctly, of the remainder 
3 defects from the 99 test defects are classified non-conservatively. 
 

 
Figure 3- Example ML classification output 
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The authors have found that the improved data entry format for ML 
training has resulted in an improvement in accuracy such that a direct 
prediction of probability of failure is possible from the ML algorithm. An 
example of the probability of failure output is shown in Figure 4. The result 
is neither strongly conservative, nor non-conservative and when 
repeated for each defect, clearly identifies those defects at increased 
probability of failure. No further assessment is required where the result 
is judged to be sufficiently accurate. 

 

 
Figure 4- Predicted probability of failure 

To use this technique to be able to predict the defect probability of 
failure at a particular year it is important to recognise two main 
concepts: 
 
1. The calculated probability of failure is calculated by fully probabilistic 

MCS. 
2. The most probable corrosion growth rate for each year tends to the 

mean when considered over many iterations, and thus under the 
partial-probabilistic model for estimation of the failure probability, the 
most probable defect dimension in each year is directly related to 
the mean corrosion growth rate. 
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7. Summary 

The authors recognise that structural reliability analysis using Monte 
Carlo simulation can help demonstrate that pipeline infrastructure is 
being operated in a way which maximises economic recovery, and that 
the analysis can be of commercial use when making the final investment 
decision on the development of smaller hydrocarbon pools which would 
rely on the continued availability of existing infrastructure.  

The use of structural reliability analysis is resource constrained. To 
reduce resource requirements, the authors propose a partial-probabilistic 
model that provides traditional probability of failure values. 

7.1.  Partial-Probabilistic Pipeline Defect Assessment Model 

The partial-probabilistic model calculates probability of failure using the 
fully probabilistic Monte Carlo simulation for a range of pre-determined 
defect dimensions. This is achieved by the following steps: 

1. Performing a Monte Carlo simulation of training data which is 
accelerated in the region of two orders of magnitude using custom 
design parallel processing software. 

2. Training custom designed Machine Learning software on the MCS 
data output, using the mean defect dimension at each year to provide 
another order of magnitude of improvement in speed.  

3. Based on an equivalent deterministic corrosion growth rate, defect 
dimensions are chosen for each year which forms part of the required 
output. The corrosion growth rate may be changed from year to year; 
this has the advantage of being able to run ‘what if’ scenarios such 
as predicted water breakthrough, at deterministic speeds. 

4. The output results can be used directly if of a suitable level of 
accuracy for the intended task. Alternatively, defects can be fully 
assessed using the GPU accelerated Monte Carlo simulation. 

The authors have shown that Machine Learning and GPU accelerated 
Monte Carlo simulation using a partial-probabilistic model can be used to 
calculate the probability of failure of defects in a pipeline in a comparable 
time to that taken for a single Monte Carlo simulation computed using 
current methods. 

The authors have also shown that the partial-probabilistic model can be 
used to cost effectively assess ‘what if’ scenarios at deterministic speeds, 
which can then be used to optimise strategy and final investment 
decisions. 



 OPT 2019 

Aidan Charlton, Toby Fletcher Page 13 

[1]  Anon, UK Continental Shelf Unsanctioned Discoveries Information Pack, Oil 

& Gas Authority, accessed online, 

https://www.ogauthority.co.uk/media/2792/420297-oga-small-pools.pdf, 

15/12/2018. 

[2]  Anon, The Maximising Economic Recovery Strategy for the UK, Oil & Gas 

Authority, accessed online, https://www.ogauthority.co.uk/media/3229/mer-

uk-strategy.pdf, 15/12/2018. 

[3]  Hasofer. A.M, Lind, N.C, Exact and Invariant Second-Moment Code Format, 

Journal of the Engineering Mechanics Division, 1974. 

[4] Anon. Manual for Determining The Remaining Strength of Corroded 

Pipelines, New York: The American Society of Mechanical Engineers, 

2012, ANSI/ASME B31 G-2012 

[5] Kastner. W, Rohrich. E, Schmitt. W, and Steinbuch. R, Critical Crack Sizes 

in Ductile Piping, International Journal of Pressure Vessels and Piping, Vol. 

9, 1981, pp. 197-219 

[6]  LEIS.B.N, BRUST.F.W, SCOTT.P.M, Development and Validation of a 

Ductile Flaw Growth Analysis for Gas Transmission Line Pipe, Final Report 

to A.G.A. NG-18, Catalogue No. L51543, June 1991. 

[7] Stephens. M, Nessim. M, PR-244-05302 Guidelines for Reliability Based 

Pipeline Integrity Methods, C-FER Technologies, Alberta, 2009. 

[8]  Shooman. M.L.  Probabilistic Reliability: An Engineering Approach. 

McGraw-Hill Book Co, New York, 1968. 

[9]  Anon, Develop, Optimize and Deploy GPU-accelerated Apps, NVidia, 

accessed online, https://developer.nvidia.com/cuda-toolkit, 12/01/2018. 

[10] Storti. D, Yurtoglu. M, CUDA for Engineers, New York: Addison-Wesley, 

2015. 

[11] Anon, Orange, accessed online, https://orange.biolab.si/, 10/01/2018. 

                                                 


